
Codeflex2.0  
Competitive Programming web application

Miguel M. Soares 
Polytechnic Institute of Guarda 

Celestino Gonçalves 
Polytechnic Institute of Guarda 

 
 

Abstract —Codeflex is a competitive programming platform 
that enables the creation and participation of users in 
competitive programming tournaments through the automatic 
compilation and evaluation of code submissions. Developed by 
a former student of the Polytechnic Institute of Guarda's 
Computer Engineering program in 2018 [1] [2], the platform is 
implemented over a web services architecture and aims to 
provide students with a platform for practicing programming 
problems. 

In 2022, Codeflex was extended with new functionalities 
and updates to better support the evaluation of students in 
competitive programming tournaments. This includes the 
expansion of the compilation capability to include 
programming languages currently taught in the course, as well 
as the implementation of tools for improved performance 
visualization and plagiarism detection. These updates have 
further enhanced the platform's value as a reliable and powerful 
resource for students and instructors at the Institute. 

Keywords - Web application; Web services; Automatic 
evaluation of code submissions; Competitive Programming, 
Plagiarism detection. 

I. MOTIVATION 
The motivation for this project was twofold: to acquire 

knowledge in the latest technologies such as React, Java, 
MySQL, HTML, and CSS, and to tackle the challenge of 
developing functionalities in a competitive programming 
application. Working on a project that builds upon an existing 
architecture presented the added complexity of understanding its 
operation and the technologies and techniques used. However, 
this also provided an opportunity to apply and further develop 
technical skills. 

II. OBJECTIVES 
The main objective of this project was to include the ability 

to compile and evaluate submissions in Haskell and Prolog, 
improve the visualization of user submissions, and implement 
plagiarism detection tools. The following steps were taken to 
achieve this goal: 

• Analysis of existing technologies and architecture. 
• Deployment and testing of the original platform. 
• Adding predefined functionalities to support a 

competitive environment. 
• Adaptation for compiling and evaluating Haskell and 

Prolog submissions. 

• Redesign of the user interface, including the change 
from class to functional components. 

• Implementation of tournament submission viewing for 
the manager. 

• Addition of plagiarism detection functionality for 
tournament submissions.  

• Testing of the platform in a real-world context.  
• Documentation to support future platform expansion. 

III. STATE OF THE ART 
This study is an essential step to identify and try to close the 

existing gaps in the current application model and to support 
decision making about which tools and technologies are suitable 
to be used. Initially, research was conducted about the current 
competitive programming applications, Table 1 

Table 1- Comparison of Functionalities by Platform 

 
        Platform 

 
 

 
Features  Co

de
fle

x 
[2

] 

Le
et

Co
de

 [3
] 

Ha
ck

er
Ra

nk
 [4

] 

Co
de

fo
rc

es
 [5

] 

Co
de

Ch
ef

 [6
] 

Ha
ck

er
Ea

rt
h 

[7
] 

To
pC

od
er

 [8
] 

Ju
tg

e 
[9

] 

Tournaments ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
Challenge 
Practice 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Tournament 
simulation 

 ✔ 
 

 
 

   

Achievements   ✔  ✔  ✔ ✔ 
Ranking ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Job search  
 

✔  
 

✔ ✔  
Networking  ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Mock 
interviews 

 ✔ 
 

 
 

   

Private 
Tournaments 

✔ 
  

 
 

   

Plagiarism 
detection 

✔  ✔  ✔ ✔   

Ranking 
similarweb 

-- 

21
34

 

6,
73

0 

6,
84

5 

25
,5

10
 

31
,2

82
 

10
3,

48
8 

88
3,

75
 

A. Existing applications competitive programming 

From the applications presented above, the LeetCode, 
HackerRank and Jutge platforms were chosen for a deeper and 
more critical analysis compared to the solution to be developed. 



HackerRank and LeetCode were selected because they are the 
most complete platforms and have the best ranking according 
to similarweb, Jutge is analyzed because it has a lower ranking. 

B. Critical Analysis 

The main highlights of the LeetCode platform are its focus 
on interview preparation and learning, however it does not allow 
the user to create tournaments, and the diversity of tournaments 
is inferior to HackerRank.  

HackerRank proves to be a very solid solution and is the 
platform that most closely resembles the intended goals, 
however the functionality for creating tournaments does not 
allow them to be classified as private. Jutge, on the other hand, 
is a platform with a great diversity of exercises [10], games, 
reward systems, but it is more focused on learning than on 
competitiveness. 

One of the main gaps that the new solution intends to fill is 
the creation of private tournaments, which will provide a greater 
facility to the user in situations such as Hackathons/onsite 
competitions and can also be used as a method of evaluation 
and/or preparation of students for disciplines involving 
programming. 

Next, a second survey was performed about the available 
plagiarism detection tools and their characteristics, Table 2. 

Table 2- Feature comparison per plagiarism detection tool 

  
Tools 

 
 

Features SI
M

 [1
1]

 

AC
2 

[1
2]

 

M
O

SS
 [1

3]
 

Jp
la

g 
[1

4]
 

Pl
ag

gi
e 

[1
5]

 

Sh
er

lo
ck

 [1
6]

 

Ho
lm

es
 [1

7]
 

Open source ✔ ✔ 
 

 ✔  ✔ 
Supported 

programming 
languages 

8 9 40 12 1 3 1 

Extensible ✔ ✔ 
 

✔ 
 

  
Local / Web Loc. Loc. Web Web Loc. Loc. Loc. 

Haskell support  
 

✔  
 

 ✔ 
Prolog support  

  
 

 
  

C. Existing tools for Plagiarism analysis 

MOSS (Measure of software similarity) [13] and SIM 
(Software Similarity Tester) [18] were selected because they 
have opposite characteristics. 

D. Critical analysis 

As shown in Table 2, MOSS and SIM offer distinct 
advantages and disadvantages when considering their use for 
plagiarism analysis. It is important to consider both tools based 
on the application's needs, considering several key criteria. 
Online/local availability, extensibility, and performance.  

• Online / Local – In one of the tests performed we 
verified instability with the MOSS service [19] [20], the 
integration of a tool provided as an online service 

would create a dependency on third parties, which 
could affect the performance of the platform if 
implemented. 

• Extensible – Although many of the platforms offer the 
ability to analyze several programming languages, 
none of the tools analyzed allow for the analysis of 
Prolog code. However, a tool that allows extensibility 
can be adapted as needed. 

IV. METHODOLOGY 
The process of updating a platform for real use can be 

complex, especially when working on a large project. My 
solution was to use Scrum, a type of agile project management. 
However, since I was the only one working on the project, I had 
to modify the process from the typical Scrum setup. In my 
internship, I met regularly with my internship supervisor, who 
was also my project manager, to discuss what should be 
implemented in the platform. This approach allowed me to have 
a clear and comprehensive approach to developing the platform 
and ensured that the project was fine-tuned and ready for use in 
the real context. 

V. REQUIREMENTS ANALYSIS 
To meet the requirements of the system, an analysis was 

conducted using the Unified Modeling Language (UML). This 
visual modeling language was used to plan some of the 
application's use cases and establish the initial objectives: 

• Adding predefined features and rules to tournaments 
to allow the platform to be used in a competitive 
environment. 

• Haskell and Prolog compilation and evaluation. 
• Greater control and vision by the manager. 
• Plagiarism detection in submissions. 

VI. SYSTEM ARCHITECTURE 

 
Figure 1- System architecture 

The platform is supported by a web services architecture, 
Figure 1 that promotes modularity and flexibility. All services 
were then converted to Docker containers, allowing for better 
organization, and simplifying the application deployment 
process. Additionally, the plagiarism system was added in a 
modular form, allowing it to work independently and without 
compromising the current performance of the platform. 



The platform security is done through a token authentication 
system using JWT (JSON Web Tokens) [21] that guarantees 
which accesses and information are sent to the users.  

VII. COMPILATION PROCESS 
The compilation process, as illustrated in Figure 2, begins 

when the user submits a solution for a given exercise. This 
submission is sent to the backend through a secure SSH (Secure 
Shell) connection and compiled to produce a result. This result 
is then compared with the solution to the problem in order to 
evaluate the submission. 

 
Figure 2- Submission Compilation Process 

On the compilation server the file, depending on the 
language, needs instructions to be compiled. The following 
command illustrates the instruction for compiling Java via the 
javac compiler, assuming the file is in the location where the 
command is executed. 

javac submissao.java 2> compilerError;  

This will compile the file submission and any errors will be 
saved in the compilerError file. Once the file is compiled, it can 
be executed with the following command: 

java submission 2> run_error.txt > run_output.txt;  

In the case of an error, the output will be placed in 
runerror.txt, while successful execution will be placed in 
runoutput.txt. If there are no errors detected in the compilation, 
the result  will be placed in the last file, which will then be 
compared with the test cases to come up with the evaluation. 

VIII. ALERNATIVE COMPILATION PROCESS – DRIVERS 
Not all compilers use the same parameters and not all 

compilers work in the same way. In order to be able to compile 
the new languages it was necessary to create drivers that 
allowed this compilation without compromising the 
functionality of the existing compilation processes. 

The simplest example of necessary changes is the import of 
libraries, assuming that it is necessary to use a certain library in 
the solution to be submitted by the student, and that this library 
as it is present in most of the IDE ́s, is considered default, and 
it does not make much sense for the student to include the 
library along with the code. 

The drivers come to solve this problem, through code 
injection, transparently where needed. 

 

 
Figure 3- Driver and driverless submission process 

When the submission is sent, depending on the language 
selected, the corresponding driver is used, Figure 3 

IX. PLAGIARISM ANALYSIS 
The evaluation of the available tools had a great influence 

on the decision about the possible solution. It was decided that 
the tool should work locally, thus eliminating the dependency 
on an external service, which could fail and compromise the 
platform's operation at any time. Additionally, the extensibility 
of the tool was considered. For the development, it was always 
kept in mind that the platform should be updated, and that new 
programming languages should be supported. Therefore, it was 
necessary for the tool to be expandable, in order to keep up with 
the evolving needs of the platform. 

A. Extension of SIM 

The decision fell on the SIM Tool, Figure 4, because except 
for the support of out-of-the-box languages all other 
characteristics were favorable for integration with the 
application. 

 
Figure 4- SIM Tool Operation process [18] 

Plagiarism detection methods fall into three main categories 
in the way they evaluate code, through structure, semantics and 
behavior [22] [23]. SIM uses a structural analysis approach, 
where similarity is calculated by matching the code structure 
between two files. It works by converting input files to tokens 
through lexical analysis, where each token can represent an 
arithmetic function, a logical operation, a string, a comment, 
etc. In the case of the following example. 

for (i = 0; i < max; i++)  

It is converted to: 

TKN_FOR TKN_LPAREN TKN_ID_I TKN_EQUALS TKN_ZERO TKN_SEMICLN  



After both files are converted, two sets of tokens result, one 
is split into sections that represent a module of the other set. 
Each of these modules is then aligned separately. This 
technique allows similarity detection even when the positions 
of the modules are swapped. 

The form of extension is through the addition of 
dictionaries, for each language, which are used when converting 
the files to tokens. So a dictionary was created for the Prolog 
language.  

As a result we have a bash script capable of evaluating 
Prolog files by inputting two files. 

./script_name file1.pl file2.pl  

B. Parsing Service 

Considering the initial objectives, it was necessary to add 
the ability to detect similar submissions. This automated 
analysis simplifies and streamlines the manual analysis process, 
which is quite laborious. 

The Analysis Service provides a solution to interconnect the 
previously developed solution with the Codeflex platform, 
enabling analysis of user submissions in a tournament. The 
service was designed to be used within the platform, but its 
modular design as a script with no dependencies makes it usable 
as an independent tool. 

A NodeJS server was created to receive submissions 
through an API, recreate them on the server, and perform 
analysis to produce a report for the manager. The server uses 
the following process to parse submissions: 

• Receive JSON submissions. 
• Remove any folder from previous analysis. 
• Create a /tmp folder. 
• Create folders for each user and subfolders for each 

problem. 
• Decode the submissions, storing each in a Prolog file 

within the corresponding folders. 
• Generate commands for all submissions for a problem. 
• Evaluate all submissions using the previously 

developed script. 
• Return the analysis report. 

The service organizes submissions by problem by creating 
subfolders, storing the path of each in an object for easy 
execution: 

 }  
  problem: '5', 
   exec_path: ' ./tmp/RicardoAndrade/5/24.pl ./tmp/RicardoAndrade 
./tmp/PauloTomasLda/5/29.pl ./tmp/PauloTomasLda/5/32.pl ./tmp/Paul 
./tmp/Guilherme Alves/5/31.pl ./tmp/NobleLip/5/26.pl ./tmp/NobleLi 
./tmp/RodrigoMartins/5/39.pl' 
 }, 
 { 
   problem: '6', 
   exec_path: ' ./tmp/RicardoAndrade/6/30.pl ./tmp/NobleLip/6/37.pl' 
 }  

Then the script is run for each problem, the Result has the 
following structure: 

File ./tmp/mustafa.bukh/4/7.pl: 25 tokens, 3 lines 
File ./tmp/mustafa.bukh/4/14.pl: 25 tokens, 3 lines 
File ./tmp/NobleLip/4/12.pl: 29 tokens, 6 lines 
File ./tmp/NobleLip/4/13.pl: 29 tokens, 6 lines 
File ./tmp/NobleLip/4/15.pl: 33 tokens, 7 lines 
File ./tmp/Rui Condesso/4/16.pl: 27 tokens, 2 lines 
File ./tmp/RodrigoMartins/4/18.pl: 27 tokens, 2 lines 
File ./tmp/afonso/4/20.pl: 20 tokens, 2 lines 
File ./tmp/DiogoNeto/4/33.pl: 33 tokens, 9 lines 
./tmp/PauloTomasLda/4/4.pl consists for 100 % of ./tmp/DiogoNeto/4/33 
./tmp/Rui Condesso/4/16.pl consists for 100 % of ./tmp/RodrigoMartins 
./tmp/1705091/4/41.pl consists for 86 % of./tmp/raquelvidal99@hotmail 
./tmp/NobleLip/4/15.pl consists for 76 % of ./tmp/afonso/4/38.pl mate  

This result is sent back to the platform via the API, thus 
making it an independent plagiarism detection service. 

X. VALIDATION IN REAL CONTEXT 
The use of Codeflex in real context was tested through 

programming tournaments in the Haskell and Prolog languages 
at the Polytechnic Institute of Guarda. 

A. Haskell Tournament 

The first tournament, for the Haskell language, took place 
on May 06, 2022, and involved 5 students competing to solve 5 
problems. During the tournament, various issues were 
identified, including a lack of visualization of student 
submissions, no plagiarism detection, and a crash due to an 
invalid character in a student submission. These issues 
highlighted the need for further development and improvements 
to the platform before the Prolog Tournament. 

B. Prolog Tournament 

The Prolog tournament took place on December 14, 2022, 
as part of the Artificial Intelligence unit. The tournament had 
23 students, who competed in solving 4 problems., which was 
in the final stages of development, showed that the platform 
performed as expected and provided an effective means for 
evaluating student performance and detect plagiarism on the 
submissions. 

I. CONCLUSION 
In conclusion, the development of the extended version of 

Codeflex was a challenging project that required a thorough 
understanding of the existing architecture and technologies. By 
implementing new functionalities such as the ability to compile 
and evaluate submissions in Haskell and Prolog, improved 
visualization of user submissions, and plagiarism detection 
tools, the platform has become a valuable resource for students 
and instructors. These changes bring significant benefits to the 
institution, instructors, and students by streamlining the code 
evaluation process and ensuring that plagiarism is effectively 
detected. The newly developed functionalities are a significant 
improvement over traditional methods and are poised to have a 
positive impact on the field of competitive programming and 
student evaluation. 



 BIBLIOGRAPHIC REFERENCES 
 
[1]  M. Brito e C. Goncalves, “Codeflex: a web-based 

platform for competitive programming.,” In 2019 14th 
Iberian Conference on Information Systems and 

Technologies (CISTI) (pp. 1-6). IEEE., 2019, June. 
[2]  “Repositório Github Codeflex - Miguel Brito,” [Online]. 

Available: https://github.com/miguelfbrito/Codeflex. 
[Acedido em 10 12 2022]. 

[3]  “Leet Code Landing page,” [Online]. Available: 
https://leetcode.com/. [Acedido em 15 12 2022]. 

[4]  “HackerRank Landing page,” [Online]. Available: 
https://www.hackerrank.com/. [Acedido em 15 12 

2022]. 
[5]  “Codeforces Landing page,” [Online]. Available: 

https://codeforces.com/. [Acedido em 15 12 2022]. 
[6]  “Codechef Landing page,” [Online]. Available: 

https://www.codechef.com/. [Acedido em 15 12 2022]. 
[7]  “HackerEarth Landing page,” [Online]. Available: 

https://www.hackerearth.com/. [Acedido em 15 12 
2022]. 

[8]  “TopCoder Landing page,” [Online]. Available: 
https://www.topcoder.com/. [Acedido em 15 12 2022]. 

[9]  “Jutge Landing page,” [Online]. Available: 
https://jutge.org/. [Acedido em 15 12 2022]. 

[10]  J. Petit, . S. Roura, J. Carmona, J. Cortadella, F. I. J. 
Duch, O. Gimenez, A. Mani, J. Mas, E. Rodriguez-

Carbonell, E. Rubio, E. de San Pedro e D. 
Venkataramani, “Jutge.org: Characteristics and 
Experiences,” IEEE Transactions on Learning 

Technologies ( Volume: 11, Issue: 3 ), 01 July-Sept. 
2018. 

[11]  “Repositório Github Software similarity tester SIM - 
mpanczyk,” [Online]. Available: 

https://github.com/mpanczyk/sim. [Acedido em 15 12 
2022]. 

[12]  “Repositório Github AC2 Source code plagiarism 
detection tool - manuel-freire,” [Online]. Available: 

https://github.com/manuel-freire/ac2. [Acedido em 15 
12 2022]. 

[13]  “Moss - A System for Detecting Software Similarity,” 
[Online]. Available: 

https://theory.stanford.edu/~aiken/moss/. [Acedido em 
23 11 2022]. 

[14]  “Repositório Github JPlag Token-Based Software 
Plagiarism Detection - jplag,” [Online]. Available: 

JPLAG. [Acedido em 18 12 2022]. 
[15]  “Plaggie Landing page,” [Online]. Available: 

https://www.cs.hut.fi/Software/Plaggie/. [Acedido em 
15 12 2022]. 

[16]  “Repositório Github The Sherlock Plagiarism Detector - 
diogocabral,” [Online]. Available: 

https://github.com/diogocabral/sherlock. [Acedido em 
18 12 2022]. 

[17]  J. Hage, B. Vermeer e G. Verburg, “Plagiarism 
Detection for Haskell with Holmes,” 2013. 

[18]  D. Grune, “The software and text similarity tester SIM,” 
[Online]. Available: 

https://dickgrune.com/Programs/similarity_tester/. 
[Acedido em 23 11 2022]. 

[19]  “Moss is not working #56,” [Online]. Available: 
https://github.com/soachishti/moss.py/issues/56. 

[Acedido em 15 12 2022]. 
[20]  “Moss not working? #55,” [Online]. Available: 

https://github.com/soachishti/moss.py/issues/55. 
[Acedido em 15 12 2022]. 

[21]  “JSON Web Tokens,” [Online]. Available: 
https://jwt.io/. [Acedido em 15 9 2022]. 

[22]  A. S. M. BEJARANO, L. . E. GARCI´A e E. E. 
ZUREK, “Detection of Source Code Similitude in 

Academic Environments,” Barranquilla, Colombia,, 
2012. 

[23]  J. C. Paiva, J. P. Leal e Á. Figueira, “Automated 
assessment in computer science education: A state-of-

the-art review.,” ACM Transactions on Computing 
Education (TOCE), 22(3), 1-40., 2022. 

 
 


	I. Motivation
	II. Objectives
	III. State of the art
	A. Existing applications competitive programming
	B. Critical Analysis
	C. Existing tools for Plagiarism analysis
	D. Critical analysis

	IV. Methodology
	V. Requirements Analysis
	VI. System Architecture
	VII. Compilation Process
	VIII. Alernative Compilation Process – drivers
	IX. Plagiarism analysis
	A. Extension of SIM
	B. Parsing Service

	X. Validation in real context
	A. Haskell Tournament
	B. Prolog Tournament

	I. Conclusion
	Bibliographic References


